Suppose we are given the following data:
(1) A 2-fold monoidal category $\mathcal{C}$, with tensor products $\otimes_{1}$ and $\otimes_{2}$ and interchange maps $\eta_{a b c d}:\left(a \otimes_{2} b\right) \otimes_{1}\left(c \otimes_{2} d\right) \rightarrow\left(a \otimes_{1} c\right) \otimes_{2}\left(b \otimes_{2} d\right)$ satisfying the axioms described in [BF],
(2) A (2-fold monoidal) natural transformation $\Lambda$ of the identity functor $1_{\mathcal{C}}$, and
(3) A "dimension function" $\sigma: \operatorname{Obj}(\mathcal{C}) \rightarrow \mathbb{N}$ which is additive over the tensor products: $\sigma\left(a \otimes_{1} b\right)=\sigma(a)+\sigma(b)$ and $\sigma\left(a \otimes_{2} b\right)=\sigma(a)+\sigma(b)$.
We propose the following construction of a related 2-fold monoidal category:

Definition. The category $\mathcal{C}: \Lambda$ is constructed as follows:
(1) $\operatorname{Obj}(\mathcal{C}: \Lambda)$ is the same as $\operatorname{Obj}(C)$.
(2) Hom sets in $\mathcal{C}: \Lambda$ are the same as in $C$, but restricted to morphisms between objects of the same dimension. That is,

$$
\operatorname{Hom}_{\mathcal{C}: \Lambda}(a, b)= \begin{cases}\operatorname{Hom}_{\mathcal{C}}(a, b), & \sigma(a)=\sigma(b) \\ \emptyset, & \text { otherwise }\end{cases}
$$

(3) $\mathcal{C}: \Lambda$ has the same tensor products $\otimes_{1}$ and $\otimes_{2}$ as $\mathcal{C}$.
(4) The interchange map for $\mathcal{C}: \Lambda$ is $(\eta: \Lambda)$ defined by

$$
(\eta: \Lambda)_{a b c d}=\left(1_{a} \otimes_{1} \Lambda_{c}^{\sigma(b)} \otimes_{2} \Lambda_{b}^{\sigma(c)} \otimes_{1} 1_{d}\right) \circ \eta_{a b c d}
$$

where $\Lambda_{x}^{y}$ indicates $y$-fold composition of the endomorphism $\Lambda_{x}: x \rightarrow x$, and by convention $\Lambda_{x}^{0}$ indicates the identity map $1_{x}$.

## Example.

Let $\mathcal{C}$ be the category of free $\mathbb{Z}$-modules with direct sum playing the role of both "products", $\sigma$ equal to the rank, and the standard symmetric braiding isomorphism playing the role of the interchange map. Let $\Lambda$ be multiplication by a nontrivial scalar $x$. The twisted interchange map from $a \oplus b \oplus c \oplus d$ to $a \oplus c \oplus b \oplus d$ can be viewed as a block matrix:

$$
\left(\begin{array}{llll}
1 & & & \\
& & x^{\sigma(b)} & \\
& x^{\sigma(c)} & & \\
& & & 1
\end{array}\right)
$$

where each entry represents a scalar of the appropriate dimension. Note that if $x$ is not a unit then the twisted interchange is not an isomorphism.

The point, of course, is the following:
Proposition. The category $\mathcal{C}: \Lambda$ defined above satisfies the axioms of a 2 -fold monoidal category.

## Proof.

This requires nothing more than walking through the axioms in definition 1.7 of [BF], which are all routine. Remarks:
(1) Naturality of $(\eta: \Lambda)$ is straightforward but this is the reason for restricting to maps between same-dimension objects.
(2) The internal/external unit conditions are satisfied due to the fact that $\sigma(1)$ must be 0 .
(3) Since we are constructing a 2 -fold category there is no giant hexagon to worry about.
(4) The interesting part is the associativity constraints. The two legs of the internal associativity diagram can be reduced to
$\left(1_{u} \otimes \Lambda_{w}^{\sigma(v)} \otimes \Lambda_{y}^{\sigma(v)+\sigma(x)} \otimes \Lambda_{v}^{\sigma(w)+\sigma(x)} \otimes \Lambda_{x}^{\sigma(y)} \otimes 1_{z}\right) \circ \eta_{u w, v x, y, z} \circ \eta_{u, v, w, x}$
and
$\left(1_{u} \otimes \Lambda_{w}^{\sigma(v)} \otimes \Lambda_{y}^{\sigma(v)+\sigma(x)} \otimes \Lambda_{v}^{\sigma(w)+\sigma(x)} \otimes \Lambda_{x}^{\sigma(y)} \otimes 1_{z}\right) \circ \eta_{u, v, w y, x z} \circ \eta_{w, x, y, z}$
respectively (subscripts on the tensors are surpressed). Equality then follows by the internal associativity of the original $\eta$. This is where we need the additivity of $\sigma$ over $\otimes_{1}$, and the fact that $\Lambda$ is a monoidal natural transformation.
(5) The external associativity axiom is entirely similar and makes use of the additivity of $\sigma$ over $\otimes_{2}$.

